A monotonicity property of the joint spectral radius

نویسنده

  • Fabian Wirth
چکیده

We show that the joint spectral radius of a set of matrices is strictly increasing as a function of the data in the sense that if a set of matrices is contained in the relative interior of the convex hull of an irreducible set of matrices, then the joint spectral radius of the smaller set is strictly smaller than that of the larger set. This observation has some consequences in the theory of time-varying stability radii and their calculation. We show by example that, strict monotonicity notwithstanding, 0 may be a proximal normal of the joint spectral radius of some (finitely parameterized) matrix polytopes functions. This shows that the time-varying stability radius is not in general Lipschitz continuous when it is continuous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra

In this paper, we discuss some properties of joint spectral {radius(jsr)} and  generalized spectral radius(gsr)  for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but  some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...

متن کامل

The generalized spectral radius and extremal norms

The generalized spectral radius, also known under the name of joint spectral radius, or (after taking logarithms) maximal Lyapunov exponent of a discrete inclusion is examined. We present a new proof for a result of Barabanov, which states that for irreducible sets of matrices an extremal norm always exists. This approach lends itself easily to the analysis of further properties of the generali...

متن کامل

Cartesian decomposition of matrices and some norm inequalities

Let ‎X be an ‎‎n-‎‎‎‎‎‎square complex matrix with the ‎Cartesian decomposition ‎‎X = A + i ‎B‎‎‎‎‎, ‎where ‎‎A ‎and ‎‎B ‎are ‎‎‎n ‎‎times n‎ ‎Hermitian ‎matrices. ‎It ‎is ‎known ‎that ‎‎$Vert X Vert_p^2 ‎leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)‎‎‎$, ‎where ‎‎$‎p ‎‎geq 2‎$‎ ‎and ‎‎$‎‎Vert . Vert_p$ ‎is ‎the ‎Schatten ‎‎‎‎p-norm.‎ ‎‎ ‎‎In this paper‎, this inequality and some of its improvements ...

متن کامل

A Rapidly-converging Lower Bound for the Joint Spectral Radius via Multiplicative Ergodic Theory

We use ergodic theory to prove a quantitative version of a theorem of M. A. Berger and Y. Wang, which relates the joint spectral radius of a set of matrices to the spectral radii of finite products of those matrices. The proof rests on a theorem asserting the existence of a continuous invariant splitting for certain matrix cocycles defined over a minimal homeomorphism and having the property th...

متن کامل

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004